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=7.5eVin Eq. (1). More extensive unpublished calcu-
lations by these authors bear out our expectation that
at larger angles of incidence, 6=20°, the agreement be-
tween the model calculations and experimental data has
degenerated significantly. We are indebted to Dr. Jepsen,
Dr. Marcus, and Dr. Jona for preprints of their results
(which were submitted for publication after the submis-
sion of this manuscript).

16c, B. Duke and C. W. Tucker, Jr., Surface Sci. 15,
231 (1969).

"R, 0. Jones and J. A. Strozier, Jr. (private com-
munication). We are indebted to Dr. Jones and Dr.
Strozier for bringing their more extensive calculations
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on Be(0001) to our attention. Their original calculations
are presented in J. A. Strozier, Jr. and R. O. Jones,
Phys. Rev. Letters 25, 516 (1970).

181 this context, we should note that the Jellium-model
RPA calculations of A, (E) used by Tong and Rhodin are
in disagreement with experimental data by factors of the
order of 2 in all cases for which the model has been
tested. We are indebted to Professor M. B. Webb for
pointing this out to us in the case of Ag and to Dr. R. H.
Ritchie in the case of Al.

BE, C. Snow and J. T. Waber, Phys. Rev. 157, 570
(1967).
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The philosophical and mathematical justifications for the use of the extended Huckel theory
(EHT) in calculating the physical properties of solids are stated, difficulties with the use of
EHT in its present form are pointed out, and methods for improving EHT calculations in sol-

ids are discussed.

The publication of the paper by Messmer and
Watkins® on the calculation of the physical proper-
ties of diamond and of a nitrogen defect in diamond
by the extended Huckel theory (EHT) illustrates
once again the usefulness of this simple but elegant
quantum-mechanical method of calculating the phys-
ical properties of molecules and crystals. EHT 2
is an approximation®'* of the rigorous Roothaan-
Hartree-Fock® (RHF) linear combination of atomic
orbitals molecular-orbital self-consistent-field
(LCAO-MO-SCF) quantum-mechanical method. As
such, there are some limitations in its use, par-
ticularly in crystals, most of which, happily, can
be overcome. It is our purpose in this paper to
state the philosophical and mathematical justifica-
tions for the use of EHT, to point out limitations in
its use, particularly in crystals, and to suggest
improvements to remove these limitations.

Philosophically, the use of EHT is justified be-
cause it may be applied at the present time to sys-
tems containing at least 200 atomic orbitals, i.e.,
50 second- and third-period atoms, or more if hy-
drogen is one of the constituents, whereas rigorous
SCF calculations are still limited to relatively few
atoms. Thus many interesting systems are open
to study by EHT but not by SCF methods.

The mathematical justification for the use of EHT
in calculating the physical properties of molecules
(and crystals, small regions of which may be re-

garded as large molecules) has been adequately des-
cribed elsewhere.®* Suffice it to say here that the
use of EHT in calculating MO wave functions and

MO energies is justified because the EHT equations
to be solved have exactly the same form as the rig-
orous RHF® equations, i.e., the equations in both
cases are

n
azx(HaB— €;:Sap)Ci8=0, a=1...n.

In both methods @ and B refer to AO’s, ¢ refers to
MO’s, S,z are the overlap integrals between the »
atomic orbitals x, and x5, €; are the MO energies,
and c;s are the MO coefficients. There are n
equations with » terms in each equation. The quan-
tities solved for are €; and ¢;5. In both methods
Sqs are the same; however, in the RHF method

H,p; are complicated functions of the MO coefficients
and of two-, three-, and four-center integrals, and
this fact necessitates solving the equations by iter-
ation. On the other hand, in EHT the H,, terms
are approximated by valence-orbital ionization en-
ergies and the H,,; terms are approximated by the
Wolfsberg- Helmholz® expression H 5= 0. 5KS 4

X (H 4o + Hgs), Or some similar expression. K is a
constant usually taken to be between 1.0 and 2. 0.

If H,, and Hgs have been judiciously chosen, then
the EHT equations are quite similar to the last
iteration of the RHF equations, and the resulting
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MO’s and MO energies are virtually the same. It
is this fact which mathematically justifies the use
of EHT and explains why EHT wave functions are
good approximations to RHF wave functions. How-
ever, as we shall see, EHT total energies are not
good approximations to RHF total energies.

The difficulties with the use of EHT in calculating
the physical properties of crystals are of two types:
one having to do with the EHT formalism itself and
the other having to do with the model of the crystal.
Inwhat follows problems (i) and (ii) belong to the first
type and problems (iii) and (iv) belong to the second
type.

Problem (i) has to do with the way the RHF H,
and H,; are approximated by EHT. Newton, Boer,
and Lipscomb® have examined this question in a
series of papers, which now includes other authors,’
and propose an improvement of EHT which will
allow calculation of values of MO coefficients and
energies for large systems more nearly equivalent
to what the rigorous RHF values would be than the
EHT method used by Messmer and Watkins will
allow. Lipscomb ef al. have studied many small-
molecule calculations and have concluded that the
Hamiltonian matrix elements from small-molecule
SCF calculations can be used to calculate the EHT
Hamiltonian matrix elements for similar but much
larger molecules. They thus avoid the problem of
calculating all the necessary integrals for the RHF
method but at the same time simulate the exact
RHF equations for alarge molecule or crystal. They
write the diagonal Hamiltonian matrix elements as

HU‘N= fXa(— %Vz)deV*' Vaat

and calculate the kinetic-energy term exactly. This
term is subtracted from H,,, which has been taken
from small-molecule calculations, to give V,,.
They have determined that the Wolfsberg-Helmholtz
approximation applies only to the potential energy
part of the Hamiltonian matrix elements, so for the
off-diagonal elements H .z they use the expression

H g =f Xal= %Vz)XBdV +“KSqp (Voo + VBB)/Z” ’

where the kinetic-energy term is again calculated
exactly. We place the Wolfberg-Helmholz approx-
imation in quotation marks because the exact ex-
pression and value of K depend on which atomic
orbitals are involved. This improvement is suf-
ficiently simple and important that it ought to be
incorporated* immediately into all EHT calcula-
tions on solids. ,

Problem (ii) has to do with the way in which the
energy of the entire system is calculated. It can
be shown that the RHF energy is given by

N/2
E=20; H,+Z; (2J;;-K;i;)+(ONg)
i=1 ij
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The EHT approximation is derived from the third
expression where the assumption is made that the
electron-electron repulsion terms J);;(2/;;— K;;)
and the nuclear-nuclear repulsion (V) terms can-
cel each other and the energy of the system is
equal to twice the sum of the energies of the filled
MO’s.

The number of situations!’?®=*2 in which this EHT
expression gives good results is embarrassing.
The reason it gives any results at all is that the
sum of the energies of the filled molecular orbitals

N/2
2 Z; €;
i=1

contains kinetic-energy terms, electron-nuclear
attraction terms, and electron-electron repulsion
terms, which together can lead to EHT energy min-
ima in a variety of calculations, such as elastic
constants and compressibility of crystals, 1'®10
atom migration energies,'® Jahn-Teller distortions
in crystals, ! barriers to internal rotation in mol-
ecules,?® and vibration in molecules.?"'? The ex-
pression is clearly wrong, however, as shown by
the fact that molecules such as H,, Li,, Be,, C,,
HF, and HCI do not show any energy minima at all,
as the internuclear distance is changed, in EHT
calculations.® In addition, we found spurious re-
sults in our graphite calculations!® when we moved
an interstitial carbon atom too near certain other
carbon atoms, i.e., the atoms tended to collapse
into one another and the energy of the system be-
came increasingly negative rather than less nega-
tive as would be the case if nuclear-nuclear re-
pulsions had been included in the calculations.
Other authors have raised similar objections.!?

One of us has proposed a solution* to this prob-

lem in which the second part of Eq. (1) is used

to calculate the energy of the system. H; may be
written as

Q
H{=EC¢°‘C¢3[/-X&‘<— %Vz- L _Z_A>X8dy:]’
aB A=174

where A refers to the @ nuclei in the system, Z,
is the charge on nucleus A, and 7, is the distance
from nucleus A to the electron in question. In
addition to the kinetic-energy integrals which have
already have been evaluated, this expression re-
quires evaluating electron-nuclear attraction in-
tegrals, some of which may involve three centers.
Programs for both kinds of integrals are available
from the Quantum Chemistry Program Exchange
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(QCPE).* This improvement should also be incor-
porated into EHT before further calculations on
solids are carried out.

Problem (iii) has to do with the size of the models
used in solid-state calculations. We carried
out virtually the identical calculation'® on dia-
mond and on silicon as did MW but abandoned
it in favor of graphite because we considered the
35-atom model too small to be meaningful and
larger EHT programs were not then available.

Our 35-atom model was exactly the same as MW’s,
although we used slightly different valence-orbital
ionization energies for diamond and in the case of
silicon appropriate values of the Slater exponents,
valence-orbital ionization energies, and lattice
constant. We were concerned primarily with the
energy of vacancy migration and the energy of
Frenkel-pair formation. In the case of silicon we
found that moving an atom from 000 to a vacancy at
1i% required an activation energy of 2.1eV (000 to
§3%), but to move an atom from 3% to a vacancy

at 000 required an activation energy of 5.4 eV

(117 to 3%3). Clearly this lack of symmetry is the
result of too small a model and it raises questions
[beyond problems (i) and (ii)] concerning MW’s Jahn-
Teller calculation. Their “large molecule” with

a defect at the center is suitable for pioneering cal-
culations, but far too small to be anything more.
Fortunately, larger EHT calculations have been
programmed—we have used a 200 X200 in our lab-
oratory as opposed to the 140x 140 used!® by MW,
and even larger ones are on the way. Also judi-
cious use of group theory can easily double or tri-
ple the size of the crystal.

Problem (iv) deals with boundary conditions and is
closely related toproblem (iii). Contrary to the state-
ment by MW that “the success of the EHT method
here is related to the uniform charge density over
the cluster,” neither is the charge density as cal-
culated by EHT uniform over the cluster (as, of
course, it should be for the model to be reasonable)
nor is the success of EHT related to uniform charge
density.!” Our results on the 35-atom diamond
model from a Mulliken population analysis'® showed
the charge to range from 0. 38¢ on the central atom
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through 0. 37e, 0. 17¢, and 0. 06¢ on each successive
coordination sphere to — 0. 76e on the outer (001)
atoms. The corresponding values in silicon are
0.39e, 0. 35¢, 0. 16¢, 0. 06e, and — 0. 76e. The EHT
method piles up negative charge on the outside of
the molecule in the same fashion as a particle in
a spherical-box calculation. In addition to larger
models, a technique helpful in reducing the charge
differential in covalent crystals is to supply boun-
dary conditions by adding hydrogen atoms at appro-
priate positions and thereby to remove the loose
ends from the cluster. We had no opportunity to
do this in our silicon and diamond calculation be-
cause we also were limited at that time to 140
atomic orbitals; however, in our graphite calcula-
tions'® we found the carbon-atom charges to be

0. 14e, 0. 3le, and - 0. 22e from the inside out on our
24- carbon-atom model (coronene) without hydro-
gens, and 0, 02¢, 0. 04e, and - 0. 12¢ on the same
carbon atoms when we placed hydrogens in their
proper positions at the edge of the structure. The
hydrogen charge was 0.09e. Proper boundary
conditions can thus eliminate large charge differ-
entials at the center of the model.

The success of EHT in MW’s paper is related to
two factors: (a) EHT MO’s and MO energies are
closely related to RHF MO’s and MO energies if
the parameters in the secular equations have been
properly chosen, which is the reason for the good
agreement of MW’s results with the EPR and ENDOR
results, for proper grouping of their wave functions
into bands, and for the fact that their nitrogen-atom
wave function is in the proper place; and (b) EHT
total energies contain kinetic-energy, nuclear-elec-
tron attraction, and electron-electron repulsion
terms, which is often enough to establish an energy
-minimum, and this is the reason that MW were
able to calculate elastic constants and the Jahn-
Teller distortion.

EHT has been thoroughly exploited in molecular
calculations and the time is now at hand for extend-
ing EHT to solid-state calculations on a broad
scale. Imaginative calculations such as those of
MW coupled with the cautions and improvements
discussed here should prove very fruitful.
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The general comments of Moore and Carlson®
with regard to our use of extended Huckel theory
(EHT) on a finite molecular cluster to simulate
the “deep level” in a semiconductor?®~* are cer-
tainly valid. Improvements in the EHT formalism
along the lines they suggest and in other ways,
as well as the use of more sophisticated molecular-
orbital approaches, should be tried. Similarly,
improvements in the model should be made both
by increasing its size and by attempting to “tie
up” the surface orbitals in some way. In this
regard, periodic boundary conditions represent
another attractive approach in addition to simply
terminating the surface orbitals with hydrogen
atoms, as they suggest. We have, in fact, al-
ready carried out exploratory calculations with
some of these modifications and they will be dis-
cussed in a detailed paper currently in prepara-
tion. However, it should be pointed out that all
such improvements of necessity require consider-
ably more work and hence longer computing times.

There will always be, therefore, strong reasons
to use the simplest techniques and the smallest
clusters that are sufficient to handle the problem.
In view of this let us take this opportunity to reex-
amine some of the conclusions of Moore and
Carlson. In effect, we believe that our model is
probably a better approximation to the problem
than their arguments may appear to suggest. The
reasons for this are as follows: We are not real-
ly interested in the properties of the cluster.
Instead we are interested in the properties of the
defect surrounded by the larger bulk crystal. We
are using the cluster only as a means of approx-
imating the larger system. This is an important
distinction and we believe points (iii) and (iv) made
by Moore and Carlson actually have to be modified
somewhat in light of this.

In particular, the cluster, because of its sur-
faces, presents a much more complex environment
for the defect than the defect would actually expe-

rience in the crystal. For one thing, there will
be an elastic “softness” and peculiar polariz-
ability effects associated with the partially filled
electronic states near the surface. Also, as
mentioned by Moore and Carlson, the charge den-
sity will not be uniform. The EHT will therefore
not be a very good approximation at all because

it is not a self-consistent treatment.

These arguments, however, apply to the cluster,
not to the defect in the large crystal. In the large
crystal, the charge density will tend to be uniform
from carbon to carbon, and the EHT approximation
to the Fock-matrix elements should therefore be
a good one.*® It is this fact which justified the
use of EHT for this problem. Arguments based
upon a Mulliken population analysis of the cluster
itself, we believe, are misleading. The charge
fluctuations are to a large extent artifacts of the
cluster surfaces and are not relevant to the prob-
lem of a defect in a real crystal.

The philosophy of our approach then is that we
start with a Fock matrix of the order of 10%,
which is the real problem of interest—a defect
surrounded by the bulk crystal. For this matrix,
EHT would give a good approximation for the ma-
trix elements. We then truncate the matrix to a
finite size but keep the matrix elements unchanged.
We argue that this gives a better approximation
for the cluster of atoms in the real crystal than
would modification of the matrix elements to ac-
count for charge fluctuations that are not actually
real.

Second, in our treatment we avoid much of the
elastic peculiarities of the surface simply by filling
all the valence band and surface orbitals of the
cluster. (In the cluster calculation, it turns out
to be difficult to separate the surface and valence
band orbitals anyway.?) The arguments of Moore
and Carlson in point (iv), on the other hand, ap-
parently result from filling only enough molecular
orbitals to make the cluster neutral. Such a pro-



